Protein subcellular localization of fluorescence imagery using spatial and transform domain features

نویسندگان

  • Muhammad Tahir
  • Asifullah Khan
  • Abdul Majid
چکیده

MOTIVATION Subcellular localization of proteins is one of the most significant characteristics of living cells. Prediction of protein subcellular locations is crucial to the understanding of various protein functions. Therefore, an accurate, computationally efficient and reliable prediction system is required. RESULTS In this article, the predictions of various Support Vector Machine (SVM) models have been combined through majority voting. The proposed ensemble SVM-SubLoc has achieved the highest success rates of 99.7% using hybrid features of Haralick textures and local binary patterns (HarLBP), 99.4% using hybrid features of Haralick textures and Local Ternary Patterns (HarLTP). In addition, SVM-SubLoc has yielded 99.0% accuracy using only local ternary patterns (LTPs) based features. The dimensionality of HarLBP feature vector is 581 compared with 78 and 52 for HarLTP and LTPs, respectively. Hence, SVM-SubLoc in conjunction with LTPs is fast, sufficiently accurate and simple predictive system. The proposed SVM-SubLoc approach thus provides superior prediction performance using the reduced feature space compared with existing approaches. AVAILABILITY A web server accompanying the proposed prediction scheme is available at http://111.68.99.218/ SVM-SubLoc CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for an association between Wnt-independent -catenin intracellular localization and ovarian apoptotic events in normal and PCO-induced rat ovary

The association of secreted frizzled related protein type 4 (Sfrp4) as an antagonist of Wnt mole-cules in apoptotic events has been reported previously. Moreover, its increased expression has been reported in the ovary of women with polycystic ovary (PCO). We have demonstrated in-creased Sfrp4 in PCO-induced rat ovary related to an increased number of apoptotic follicles showing nuclear ?cateni...

متن کامل

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Towards a Systematics for Protein Subcellular Location: Quantitative Description of Protein Localization Patterns and Automated Analysis of Fluorescence Microscope Images

Determination of the functions of all expressed proteins represents one of the major upcoming challenges in computational molecular biology. Since subcellular location plays a crucial role in protein function, the availability of systems that can predict location from sequence or high-throughput systems that determine location experimentally will be essential to the full characterization of exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2012